A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression

نویسندگان

  • Qisen Cai
  • Defu Zhang
  • Wei Zheng
  • Stephen C. H. Leung
چکیده

This paper presents a new fuzzy time series model combined with ant colony optimization (ACO) and auto-regression. The ACO is adopted to obtain a suitable partition of the universe of discourse to promote the forecasting performance. Furthermore, the auto-regression method is adopted instead of the traditional high-order method to make better use of historical information, which is proved to be more practical. To calculate coefficients of different orders, autocorrelation is used to calculate the initial values and then the Levenberg–Marquardt (LM) algorithm is employed to optimize these coefficients. Actual trading data of Taiwan capitalization weighted stock index is used as benchmark data. Computational results show that the proposed model outperforms other existing models. 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE

Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...

متن کامل

Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...

متن کامل

Combined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy

Rainfall is an essential index to measure drought, and it is dependent upon various parameters including geographical environment, air temperature and pressure. The nonlinear nature of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting methods. In this paper, the combined forecasting method based on data mining technology and cross entropy is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2015